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Abstract

We describe our progress in the development of fourth-order, mapped-multiblock, finite-
volume discretizations applied to systems of partial differential equations posed in high-
dimensional phase space. Our motivating application is the solution of gyrokinetic systems
modeling edge plasma evolution in tokamak fusion reactors. For these problems, the use
of computational coordinates aligned with magnetic field lines is highly advantageous in
accommodating strong anisotropy, except near the X point in axisymmetric simulations
where such a coordinate system has a singularity. We summarize our approach for addressing
this issue in the development of our COGENT testbed edge code as well as future plans.

1 Introduction

Many problems in mathematical physics are posed in phase space coordinates, typically position
and momentum. The need to numerically solve partial differential equations in 4, 5 or even
6 (e.g., 3 spatial and 3 momentum) dimensions plus time requires efficient discretizations and
advanced implementation strategies. Even then, high-performance computing resources are
essential to access the degree of resolution required by scientific applications.

We have therefore been investigating numerical discretization and implementation strategies
applicable to phase space problems on petascale systems and beyond. Central to our approach is
the use of high-order (fourth-order or better), finite-volume discretizations on block structured
grids. It has long been recognized that high-order methods enable more efficient discretizations
measured in terms of accuracy per degree of freedom. Exploiting this fact to address the
high dimensionality of phase space problems is therefore essential. More recently, interest in
high-order methods has increased due to the ascendence of multi- and many-core processor
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Figure 1: Plasma edge geometry (left) and multiblock, locally rectangular computational do-
main (right). Arrows indicate the inter-block connectivity.

architectures. Generally speaking, high-order methods possess greater arithmetic density than
low-order methods. With their regular and more easily predictable data access patterns, the
use of block-structured grids is also well-aligned with architectural trends, as has already been
demonstrated with present-day cache-based designs.

The applicability of high-order, block-structured finite volume discretizations is further en-
hanced when combined with coordinate mapping. A particularly interesting example is pro-
vided by the specific application driving our algorithm development, which is the solution of
gyrokinetic systems describing the edge plasma of tokamak fusion reactors. The relative size of
important length scales dictates a kinetic model, where each plasma species is described by a
distribution function in phase space coordinates. We consider gyrokinetic systems to have the
general conservative form

∂tf +∇ · [u(f)f ] = C(f), (1)

where f ≡ f(x, v, t) is a distribution function of the phase space coordinates (x, v) and C
denotes a collision operator. The advection velocity u depends upon the distribution function
in a nonlinear and highly nonlocal manner involving the solution of some form of Maxwell’s
equations. Further details can be found in [4]. In addition to the high-dimensionality challenge,
the edge problem is posed in a unique geometry defined by magnetic flux surfaces (Figure 1
(left)). Strong anisotropy along versus transverse to magnetic field lines motivates the use of
coordinates aligned with flux surfaces. Such coordinates can be defined by mapping logically
distinct regions of the edge geometry (left/right core, left/right central scrape-off, left/right
scrape-off, left/right private flux) to a multiblock computational domain (Figure 1 (right)),
where each block is gridded uniformly.
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2 Approach

We summarize here our general approach for the systematic development of high-order finite
volume discretizations in mapped mulitblock coordinates.

2.1 Single block

Suppose that we have a smooth mapping X = X(ξ), X : [0, 1]D → Ω from the unit cube onto
the spatial domain Ω ∈ RD. Given this mapping, the divergence of a vector field on Ω can be
written in terms of derivatives in [0, 1]D, which serves as our computational domain. That is,

∇x · F =
1
J

∇ξ · (NT F ), (2)

J = det(∇ξX) ,
(
NT

)
p,q

= det (Rp(∇ξX, eq)) , (3)

where Rp(A,v) denotes the matrix obtained by replacing the pth row of the matrix A by the
vector v, and ed denotes the unit vector in the dth coordinate direction. The relationship (2)
is an easy consequence of the chain rule, equality of mixed partials, and Cramer’s rule.

In a finite volume approach, Ω is discretized as a union of control volumes. When using
mapped coordinates, we define control volumes in Ω as the images X(Vi) of the cubic control
volumes Vi ⊂ [0, 1]D. Then, by changing variables and applying the divergence theorem, we
obtain the flux divergence integral over a physical control volume X(Vi) by∫

X(Vi)

∇x · F dx =
∫
Vi

∇ξ · (NT F )dξ =
∑

±=+,−

D∑
d=1

±
∫

A±
d

(NT F )ddAξ, (4)

where the A±d are upper and lower faces of cell Vi in the d-th direction. As described in [2], the
integrals on the cell faces A±d can be approximated using a formula for the average of a product
in terms of fourth-order accurate face averages of each factor. This yields∫

X(Vi)

∇x · F dx = h2
D∑

d=1

∑
±=+,−

±F d
i± 1

2
ed + O(h4), (5)

where

F d
i± 1

2
ed ≡

D∑
s=1

〈N s
d〉i+ 1

2
ed 〈F s〉i+ 1

2
ed +

h2

12

D∑
s=1

(
G⊥,d

0 〈N s
d〉i+ 1

2
ed)

)
·
(
G⊥,d

0 (〈F s〉i+ 1
2
ed)

)
, (6)

Here, G⊥,d
0 is the second-order accurate central difference approximation to the component of

the gradient operator orthogonal to the d-th direction: G⊥,d
0 ≈ ∇ξ − ed ∂

∂ξd
, and the operator

〈·〉i+ 1
2
ed denotes a fourth-order accurate average over the face centered at i + 1

2ed. F s is the
s-th component of F and N s

d is the (s, d)-th element of the matrix N . To reduce the stencil
size, alternative expressions can be obtained by replacing the averages 〈f〉i+ 1

2
ed and/or 〈g〉i+ 1

2
ed

used in the transverse gradients G⊥,d
0 by the corresponding face-centered pointwise values fi+ 1

2
ed

and/or gi+ 1
2
ed , respectively.
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Figure 2: Interpolation of ghost cells on smoothly-extended grid. The red X indicates the center
of a ghost control volume for which a value is to be interpolated, while the blue dots indicate
the centers of nearby control volumes that will be used in the least-squares calculation.

In [2], we demonstrated that the computation of the face averages 〈N s
d〉i+ 1

2
ed can be reduced

to integrals over cell edges. Moreover, the freestream property that the divergence of a constant
vector field computed by (6) is zero to machine accuracy also holds.

2.2 Multiblock

To extend the methods just described to multiblock grids, we apply the various stencil opera-
tions by computing ghost-cell values on grids that are smooth extensions of the original block or
union of rectangles at a level (Figure 2), together with a mechanism for obtaining single-valued
fluxes at block boundaries. To compute these ghost-cell values, we use a least-squares approach
that allows us to obtain high-order accuracy independent of the degree of smoothness of the
mesh. We compute a polynomial interpolant in the neighborhood of a ghost cell of the form

ϕ(x) ≈
∑

pd≥0;p1+···+pD≤P−1

apxp , p = (p1, . . . , pD) , xp = xp1
1 . . . xpD

D . (7)

We will assume that we know the conserved quantities in a collection of control volumes v ∈ V.
In that case,we impose the conditions∫

v

ϕ(ξ)dξ =
∑

pd≥0;p1+···+pD≤P−1

ap

∫
v

x(ξ)pdξ , v ∈ V. (8)

The integrals on the left-hand side can be computed to any order from the known integrals of
the conserved quantities Jφ, and the integrals of xp can be computed directly from the grid
mapping. Thus, this constitutes a system of linear equations for the interpolation coefficients
ap. Generally, we choose the number of equations to be greater than the number of unknowns
in such a way that the resulting overdetermined system has maximal rank, so that it can be
solved using least squares. In the case where we are computing an interpolant onto a finer grid
from a coarser one in a locally-refined mesh calculation, we impose the conservation condition
as a linear constraint.
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3 Accomplishments

3.1 COGENT algorithm testbed

To test the performance of our algorithms on gyrokinetic edge systems, we have developed a
testbed code named COGENT (COntinuum Gyrokinetic Edge New Technology). COGENT
is a 4D (2 configuration space plus 2 velocity space coordinates) continuum gyrokinetic edge
code under development by the ESL ASCR/FES collaboration. COGENT solves the “full-f”
gyrokinetic Vlasov-Poisson system presented in [5] expressed in conservation form. An arbitrary
number of kinetic species can be simulated. A Boltzmann electron model provides a fast-
running option for studying ion dynamics (including prefactor options to, e.g., maintain charge
neutrality on closed flux surfaces). The gyrokinetic system is spatially discretized using the
fourth-order finite-volume scheme in a mapped coordinate system summarized above.

The semi-discrete system is integrated temporally using a fourth-order, explicit Runge-Kutta
(RK4) scheme. At each stage of the RK4 algorithm, the gyrokinetic Poisson equation is solved
using the RK4-predicted distribution functions, yielding the electric field needed to compute the
phase space velocities. When the Boltzmann electron option is selected, the resulting nonlinear
Poisson-Boltzmann equation is solved using a Newton iteration. In each Newton iteration, the
nonsymmetric Jacobian system is solved using BiCGStab (Bi-Conjugate Gradient Stabilized)
with a preconditioner that invokes a Hypre multigrid solver. The nonsymmetry of the Jacobian
is a consequence of the form of the prefactor in the Boltzmann relation.

COGENT is built upon the Chombo library [3] under development by the SciDAC-3 FAST-
Math institute to facilitate the creation of block-structured adaptive mesh refinement (AMR)
applications. Although COGENT does not currently utilize Chombo’s AMR capabilities, a
future development path is nevertheless provided. Chombo provides support for the mapped-
grid, finite-volume formalism described above. This includes the construction of discrete metric
quantities from a user-specified mapping and the computation of fourth-order face-averaged
fluxes. COGENT utilizes Chombo’s data containers for mesh-dependent quantities distributed
over processors. Such quantities are functions of configuration space (e.g., potential) or phase
space (e.g., distribution functions), each of which can be domain decomposed independently.
Injection and projection operators between configuration/velocity and phase space have also
been developed in COGENT.

3.2 High-order discretization near X points

As described above, the primary motivation for the use of mapped coordinates in the discretiza-
tion of plasma edge problems is to accommodate strong anisotropy along magnetic field lines.
Although field lines always define smooth curves in full three-dimensional space, for axisymmet-
ric simulations in which the toroidal component is projected onto a poloidal slice, a difficulty
arises near the X point, where the poloidal field component vanishes. As seen in the left plot
in Figure 3, field line projections (the black dashed lines) become increasingly “kinked” ap-
proaching the X point, where the projections degenerate to a single point. It is therefore not
possible to define a smooth field-aligned coordinate system in this region. However, because
the poloidal component of the magnetic field vanishes at the X point and is small in a neigh-
borhood, field-induced anisotropy is not a concern, and field aligned coordinates are no longer
necessary. To apply our high-order, mapped multiblock discretization strategy in the vicinity
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Figure 3: Left: Multiblock grid and field lines (dashed lines) near the X point. Right: Field
line following grid (blue) and smooth extension of the modified grid (red) through the X point.

of X points, we must therefore transition from a field line following coordinate system to one
that can be smoothly extended through the X point.

The magnetic geometry is determined by an equilibrium model or magnetohydrodynamic
(MHD) calculation. In the approach described here, we assume that we are provided with
geometry data in terms of a table describing the (R,Z) coordinates of points along field lines
in each block, and the corresponding field data. The variation of the coordinates between the
specified points is undefined, but is assumed to be smooth. In COGENT, an arbitrary order
B-spline interpolant is used to generate a smooth mapping from the input coordinate table,
following a preprocessing step in which the table points near the X point are redistributed
and additional points are added along all block boundaries to provide a smoothly extended
mapping.

The preprocessing step begins with the specification of a neighborhood of radiusR about the
X point beyond which the coordinate system must remain field aligned. R can be determined
from the magnitude of the poloidal field component or some other physical quantities of interest
related to the anisotropy concern. Within the R-neighborhood, we identify the intersection
of field lines with block boundaries. We then redistribute the intersection points along the
block boundaries using a quartic polynomial mapping whose coefficients are chosen so as to
ensure a smooth transition at radius R (by matching derivatives) to a more equally spaced
distribution near the X point. The next step is to redefine the radial grid lines intersecting
the R-neighborhood such that they are straight and their intersection with block boundaries
containing the X point are equidistributed. Although this step moves grid points outside of
the R-neighborhood of the X point, such points are always moved along field lines using a
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root finding algorithm, so that field lines are preserved. The goal is to construct in the R-
neighborhood a grid that is as close to rectilinear as possible, since the final step is to extend the
grid through the X point using an extrapolation with monotone splines (implemented using the
pchip interpolator in the Matlab script we have developed to perform the grid preprocessing).
Figure 3 (left) shows the resulting modified grid in each of the blocks near the X point. The
dashed black curves indicate the field lines, which remain aligned with the grid away from the X
point. On the right in Figure 3 is a comparison of the original grid (blue) in the left core block
and the modified/extended grid (red). Similar extensions through the X point are obtained for
the other seven blocks.

3.3 Example

To test the accuracy of our mapped-multiblock, finite-volume discretization near the X point
of a plasma edge geometry, we considered the linear advection of a Gaussian “blob”. Because
the rest of the edge domain was irrelevant to this test, the domain was truncated to include
just a region about the X point. As indicated by the dashed yellow lines in Figure 4, the
blob was initialized slightly above and to the right of the X point, then advected downward
and to the left, passing directly through the X point. The test was performed to the same
ending time on four grids generated by successive refinement by a factor of two. Richardson
extrapolation was then applied to estimate the convergence rates, which are also shown in the
table in Figure 4. As the grid is refined, the convergence rate appears to be tending toward
fourth-order, but then decreases at the finest resolution. We believe that this behavior is due to
a loss of accuracy resulting from ill-conditioning of the normal equations used to solve the least
squares system for the multiblock interpolation coefficients. We are currently implementing an
improved algorithm for selecting the interpolation stencil at the X point, for which preliminary
tests have shown considerably improved condition numbers. We are also replacing the normal
equation solution of the least squares system (7) (which tends to square the condition number)
by a QR factorization.

4 Future Work

In addition to the work to improve the condition number of block boundary interpolation pro-
cedures, in the near-term, we are assembling the components necessary to simulate plasma
flow on realistic tokamak edge geometries, as shown in Figure 1. This includes the implemen-
tation of more general, fourth-order characteristic boundary conditions suitable for artificial
boundaries and diverter plates. Once in realistic geometries, we will be able to investigate
more systematically the optimal choice of the R-neighborhood in which the mapping diverges
from flux surfaces. Demonstrating fourth-order convergence of to solutions of the gyrokinetic
Vlasov-Poisson in a genuine edge geometry will be a major accomplishment.

Beyond this milestone, we will pursue three main issues: time integration, error estimation,
and optimization. A wide range of timescales in physically interesting problems will necessitate
more sophisticated time integration procedures; we will investigate the suitability of several
implicit-explicit partitioned time integrators. The ability to estimate efficiently the resulting
discretization error in computed solutions is important not only to understand the minimum
resolution requirements for expensive phase-space calculations, but also for uncertainty quan-
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4h/2h Extrapolated
2h/h convergence rate

512/1024 3.56 (L1)
1024/2048 3.45 (L2)

2.79 (Max)
1024/2048 3.77 (L1)
2048/4096 3.72 (L2)

3.77 (Max)
2048/4096 2.77 (L1)
4096/8192 2.74 (L2)

3.22 (Max)

Figure 4: Blob propagation near the X point, grid refinement pairs, and Richardson extrapo-
lated converge rates for the blob propagation test.

tification. We have begun work on a nonlinear error transport (e.g., [1]) capability to provide
for such estimates. Finally, working with other researchers in the SciDAC-3 FASTMath Insti-
tute, we will study the performance of the mapped multiblock capabilities in Chombo within
the context of our phase-space application and develop more efficient algorithms and imple-
mentations.
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